Part Number Hot Search : 
25T10 D6432 N5401 TDA8020 PESD3V3 E101M SFJ78G29 EMK11
Product Description
Full Text Search
 

To Download TSH95ID Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH95
HIGH SPEED LOW POWER QUAD OPERATIONAL AMPLIFIER WITH DUAL STANDBY POSITION
s 2 SEPARATE STANDBY : REDUCED s s s s s s s s
CONSUMPTION AND HIGH IMPEDANCE OUTPUTS LOW SUPPLY CURRENT : 4.5mA HIGH SPEED : 150MHz - 110V/s UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 4mV LOW NOISE 4.2 nV/Hz LOW COST SPECIFIED FOR 600 AND 150 LOADS HIGH VIDEO PERFORMANCES : Differential Gain : 0.03% Differential Phase : 0.07 Gain Flatness : 6MHz, 0.1dB max. @ 10dB gain HIGH AUDIO PERFORMANCES ESD TOLERANCE : 2kV
D SO16 (Plastic Micropackage)
s s
PIN CONNECTIONS (top view)
DESCRIPTION The TSH95 is a quad low power high frequency op-amp, designated for high quality video processing. The device offers an excellent speed consumption ratio with 4.5mA per amplifier for 150MHz bandwidth. High slew rate and low noise make it also suitable for high quality audio applications. The TSH95 offers 2 separate complementary STANDBY pins : u STANDBY 1 acting on both n 1 & 2 operators u STANDBY 2 acting on both n 3 & 4 operators They reduce the consumption of the corresponding operatorS and put the output in a high impedance state. ORDER CODE
Package Part Number TSH95I Temperature Range D -40C, +125C *
Output 1 Inverting Input 1 Non-inverting Input 1 VCC + Non-inverting Input 2 Inverting Input 2 Output 2 Standby 1 8
1 2 3 4 5 6 7 + + + +
16 Output 4 15 Inverting Input 4 14 Non-inverting Input 4 13 VCC 12 Non-inverting Input 3 11 Inverting Input 3 10 Output 3 9
Standby 2
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
November 2000
1/9
TSH95
SCHEMATIC DIAGRAM
V CC+
stdby
stdby
non inverting input Internal Vref inverting input output
Cc
stdby
stdby
VCC-
MAXIMUM RATINGS
Symbol VCC Vid Vi Toper Tstg Supply Voltage 1) Differential Input Voltage 2) Input Voltage
3)
Parameter
Value 14 5 -0.3 to 12 -40 to +125 -65 to +150
Unit V V V C C
Operating Free-Air Temperature range Storage Temperature Range
1. All voltages values, except differential voltage are with respect to network ground terminal 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V
OPERATING CONDITIONS
Symbol VCC Vic Supply Voltage Common Mode Input Voltage Range
-
Parameter
Value 7 to 12 VCC +2 to VCC -1
+
Unit V V
2/9
TSH95
ELECTRICAL CHARACTERISTICS VCC+ = 5V, V CC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25C (unless otherwise specified)
Symbol Vio Iio Iib ICC CMR SVR Avd Parameter Input Offset Voltage Vic = Vo = 0V Tmin. Tamb Tmax. Input Offset Current Tmin. Tamb Tmax. Input Bias Current. Tmin. Tamb Tmax. Supply Current (per amplifier, no load) Tmin. Tamb Tmax. Common-mode Rejection Ratio Vic = -3V to +4V, Vo = 0V Tmin. Tamb Tmax. Supply Voltage Rejection Ratio VCC = 5V to 3V Tmin. Tamb Tmax Large Signal Voltage Gain RL = 10k, Vo = 2.5V Tmin. Tamb Tmax. High Level Output Voltage Vid = 1V VOH Tmin. Tamb Tmax. Low Level Output Voltage Vid = 11V VOL Tmin. Tamb Tmax. Output Short Circuit Current Vid = 1V Io Tmin. Tamb Tmax. Source Sink Source Sink 20 20 15 15 90 36 40 mA RL = 600 RL = 150 RL = 150 -3.5 -2.8 -3 -2.5 -2.4 V RL = 600 RL = 150 RL = 150 3 2.5 2.4 3.5 3 V 80 70 60 50 57 54 1 5 4.5 100 75 70 Min. Typ. Max. 4 6 2 5 15 20 6 8 Unit mV A A mA dB dB dB
GBP fT SR en m VO1 /VO2 Gf THD G
Gain Bandwidth Product AVCL = 100, RL = 600, CL = 15pF, f = 7.5MHz Transition Frequency Slew Rate Vin = -2 to +2V, AVCL = +1, RL = 600, CL = 15pF Equivalent Input Voltage Noise Rs = 50, f = 1kHz Phase Margin AVM = +1 Channel Seperation f = 1MHz to 10MHz Gain Flatness f = DC to 6MHz, AVCL = 10dB Total Harmonic Distortion f = 1kHz, Vo = 2.5V, RL = 600 Differential Gain f = 3.58MHz, AVCL = +2, RL = 150 Differential Phase f = 3.58MHz, AVCL = +2, RL = 150
150 90
MHz MHz V/s nV/Hz Degrees dB 0.1 dB % % Degree
62
110 4.2 35 65 0.01 0.03 0.07
3/9
TSH95
STANDBY MODE VCC+ = 5V, VCC- = -5V, Tamb = 25C (unless otherwise specified)
Symbol VSBY ICC SBY Isol tON tOFF ID IOL IIL Parameter Pin 8/9 Threshold Voltage for STANDBY Mode Total Consumption Pin 8 (Standby 1) = 0, Pin 9 (Standby 2) = 0 Pin 8 (Standby 1) = 0, Pin 9 (Standby 2) = 1 Pin 8 (Standby 1) = 0, Pin 9 (Standby 2) = 0 Input/Output Isolation (f = 1MHz to 10MHz) Time from Standby Mode to Active Mode Time from Active Mode to Standby Mode Standby Driving Current Output Leakage Current Input Leakage Current LOGIC INPUT Standby 1 0 0 1 1 Standby 2 0 1 0 1 Op-Omp 1 & 2 Enable Enable Standby Standby Min. Typ. Max. Unit V
+ + +
VCC -2.2
VCC -1.6
9.4 9.4 0.8 70 200 200 2 20 20 STATUS
VCC -1.0
mA dB ns ns pA pA pA
Op-Amp 2 & 3 Standby Enable Standby Enable
STANDBY POSITION
VCC standby
STANDBY MODE To put the device in standby, just apply a logic level on the standby MOS input. As ground is a virtual level for the device, threshold voltage has been refered to VCC+ at VCC+ - 1.6V typ. In standby mode, the output goes in high impedance in 200ns. Be aware that all maximum rating must still be followed in this mode. It leads to swing limitation while using the device in signal multiplexing configuration with followers, differential input voltage must not exceed 5V limiting input swing to 2.5Vpp. SAMPLE AND HOLD
VCC
APPLICATIONS SIGNAL MULTIPLEXING
4/9
TSH95
PRINTED CIRCUIT LAYOUT As for any high frequency device, a few rules must be observed when designing the PCB to get the best performances from this high speed op amp. From the most to the least important points : LARGE SIGNAL FOLLOWER RESPONSE
u Each power supply lead has to be
by-passed to ground with a 10nF ceramic capacitor very close to the device and 10F capacitor.
u To provide low inductance and low resistance common return, use a ground plane or common point return for power and signal.
u All leads must be wide and as short as possible especially for op amp inputs. This is in order to decrease parasitic capacitance and inductance. STATIC OPEN LOOP VOLTAGE GAIN
u Use small resistor values to decrease time
constant with parasitic capacitance.
u Choose component sizes as small as possible (SMD).
u On output, decrease capacitor load so as
to avoid circuit stability being degraded which may cause oscillation. You can also add a serial resistor in order to minimise its influence. INPUT OFFSET VOLTAGE DRIFT VERSUS TEMPERATURE
SMALL SIGNAL FOLLOWER RESPONSE
5/9
TSH95
CLOSE LOOP FREQUENCY RESPONSE AND PHASE SHIFT CLOSE LOOP FREQUENCY RESPONSE
AUDIO BANDWIDTH FREQUENCY RESPONSE AND PHASE SHIFT (TSH94 vs Standard 15MHz Audio Op-Amp)
GAIN FLATNESS AND PHASE SHIFT VERSUS FREQUENCY
CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE)
CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE)
6/9
TSH95
INPUT/OUTPUT ISOLATION IN STANDBY MODE (SO16 PACKAGE) STANDBY SWITCHING
SIGNAL MULTIPLEXING (cf p. 5/10)
DIFFERENTIAL INPUT IMPEDANCE VERSUS FREQUENCY
4.5 4.0 3.5 3.0
Zin-diff (kW )
2.5 2.0 1.5 1.0 0.5
1k
10k
100k
1M Frequency (Hz)
10M
100M
COMMON INPUT IMPEDANCE VERSUS FREQUENCY
120
100
Zin-com (MW )
80
60
40
20
1k
10k
100k
1M Frequency (Hz)
10M
100M
7/9
TSH95
MACROMODEL Applies to: TSH95I
** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TSH95 1 3 2 4 5 6 (analog) ******************************************************** **************** switch ******************* .SUBCKT SWITCH 20 10 IN OUT COM .MODEL DIDEAL D N=0.1 IS=1E-08 DP IN 1 DIDEAL 400E-12 DN OUT 2 DIDEAL 400E-12 EP 1 OUT COM 10 2 EN 2 IN COM 10 2 RFUIT1 IN 1 1E+09 RFUIT2 OUT 2 1E+09 RCOM COM 0 1E+12 .ENDS SWITCH **************** inverter ***************** .SUBCKT INV 20 10 IN OUT .MODEL DIDEAL D N=0.1 IS=1E-08 RP1 20 15 1E+09 RN1 15 10 1E+09 RIN IN 10 1E+12 RIP IN 20 1E+12 DPINV OUT 20 DIDEAL 400E-12 DNINV 10 OUT DIDEAL 400E-12 GINV 0 OUT IN 15 -6.7E-7 CINV 0 OUT 210f .ENDS INV ***************** AOP ********************** .MODEL MDTH D IS=1E-8 KF=1.809064E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-01 RIN 15 16 2.600000E-01 RIS 11 15 3.645298E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 1314DC 0 FPOL 13 5 VSTB 1E+03 CPS 11 15 2.986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 3.500000E+00 FCN 5 4 VOFN 3.500000E+00 ISTB0 4 5 130UA FIBP 2 5 VOFP 1.000000E-02 FIBN 5 1 VOFN 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 2.530000E+02 FIN 5 19 VOFN 2.530000E+02 RG1 19 120 3.160721E+03 XCOM1 4 0 120 5 COM SWITCH RG2 19 121 3.160721E+03 XCOM2 4 0 4 121 COM SWITCH CC 19 5 2.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.504000E+03 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 1.400000E+03 VINM 5 27 5.000000E+01 *********** ZP ********** RZP1 5 80 1E+06 RZP2 4 80 1E+06 GZP 5 82 19 80 2.5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3.535e-02 ************************** EOUT26 2382 51 VOUT 23 5 0 ROUT 26 103 35 COUT 103 5 30.000000E-12 XCOM 4 0 103 3 COM SWITCH DOP 19 25 MDTH 400E-12 VOP 4 25 2.361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 ********** STAND BY ******** RMI1 4 111 1E+7 RMI2 0 111 2E+7 RONOFF 6 60 1K CONOGG 60 0 10p RSTBIN 60 0 1E+12 ESTBIN 106 0 6 0 1 ESTBREF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 1U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 XINV 4 0 6 COM INV .ENDS
ELECTRICAL CHARACTERISTICS VCC = 5V, Tamb = 25C (unless otherwise specificed)
Symbol Vio Avd ICC Vicm VOH VOL Isink Isource GBP SR m 8/9 RL = 600 RL = 600 Vo = 0V Vo = 0V RL = 600, CL = 15pF RL = 600, CL = 15pF RL = 600, CL = 15pF RL = 600 No load / Ampli Conditions Value 0 3.2 5.2 -3 to 4 +3.6 -3.6 40 40 147 110 42 Unit mV V/mV mA V V V mA mA MHz V/s Degrees
TSH95
PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO)
Millimeters Dim. Min. A a1 a2 b b1 C c1 D E e e3 F G L M S 0.1 0.35 0.19 0.5 45 (typ.) 9.8 5.8 1.27 8.89 3.8 4.6 0.5 4.0 5.3 1.27 0.62 8 (max.) 0.150 0.181 0.020 10 6.2 0.386 0.228 Typ. Max. 1.75 0.2 1.6 0.46 0.25 Min. 0.004 0.014 0.007
Inches Typ. Max. 0.069 0.008 0.063 0.018 0.010 0.020 0.394 0.244 0.050 0.350 0.157 0.209 0.050 0.024
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. (c) The ST logo is a registered trademark of STMicroelectronics (c) 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom (c) http://www.st.com
9/9


▲Up To Search▲   

 
Price & Availability of TSH95ID

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X